- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhang, Yapei (2)
-
Abkhiz, Shadi (1)
-
Bencherif, Sidi A (1)
-
Cai, Yulu (1)
-
Choupani, Edris (1)
-
Demireva, Elena (1)
-
Eslami, Seyed Sadegh (1)
-
Fadaie, Mahmood (1)
-
Gao, Tong (1)
-
Gomari, Mohammad Mahmoudi (1)
-
Lee, Ian_Y (1)
-
Li, Jinxing (1)
-
Li, Xiangjia (1)
-
Mahmoudi, Zahra (1)
-
Monfared, Fatemeh Nafe (1)
-
Mottini, Vittorio (1)
-
Mozel, Kevin (1)
-
Nagaraja, Tavarekere_N (1)
-
Nigam, Saumya (1)
-
Puri, Madhu (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The genetic material within cells plays a pivotal role in shaping the structure and function of living organisms. Manipulating an organism's genome to correct inherited abnormalities or introduce new traits holds great promise. Genetic engineering techniques offers promising pathways for precisely altering cellular genetics. Among these methodologies, clustered regularly interspaced short palindromic repeat (CRISPR), honored with the 2020 Nobel Prize in Chemistry, has garnered significant attention for its precision in editing genomes. However, the CRISPR system faces challenges when applied in vivo, including low delivery efficiency, off‐target effects, and instability. To address these challenges, innovative technologies for targeted and precise delivery of CRISPR have emerged. Engineered carrier platforms represent a substantial advancement, improving stability, precision, and reducing the side effects associated with genome editing. These platforms facilitate efficient local and systemic genome engineering of various tissues and cells, including immune cells. This review explores recent advances, benefits, and challenges of CRISPR‐based genome editing delivery. It examines various carriers including nanocarriers (polymeric, lipid‐derived, metallic, and bionanoparticles), viral particles, virus‐like particles, and exosomes, providing insights into their clinical utility and future prospects.more » « less
-
Xing, Liuxi; Cai, Yulu; Zhang, Yapei; Mozel, Kevin; Tang, Zhengxu; Tang, Tengteng; Mottini, Vittorio; Nigam, Saumya; Smith, Bryan_R; Lee, Ian_Y; et al (, Advanced Materials)Abstract Microrobots hold immense potential in biomedical applications, including drug delivery, disease diagnostics, and minimally invasive surgeries. However, two key challenges hinder their clinical translation: achieving scalable and precision fabrication, and enabling non‐invasive imaging and tracking within deep biological tissues. Magnetic particle imaging (MPI), a cutting‐edge imaging modality, addresses these challenges by detecting the magnetization of nanoparticles and visualizing superparamagnetic nanoparticles (SPIONs) with sub‐millimeter resolution, free from interference by biological tissues. This capability makes MPI an ideal tool for tracking magnetic microrobots in deep tissue environments. In this study, “TriMag” microrobots are introduced: 3D‐printed microrobots with three integrated magnetic functionalities—magnetic actuation, magnetic particle imaging, and magnetic hyperthermia. The TriMag microrobots are fabricated using an innovative method that combines two‐photon lithography for 3D printing biocompatible hydrogel structures with in situ chemical reactions to embed the hydrogel scaffold with Fe3O4nanoparticles for good MPI contrast and CoFe2O4nanoparticles for efficient magnetothermal heating. This approach enables scalable, precise fabrication of helical magnetic hydrogel microrobots. The resulting TriMag microrobots, with the synergistic effects of Fe3O4and CoFe2O4nanoparticles, demonstrate efficient magnetic actuation for controlled movement, precise imaging via MPI for imaging and tracking in biological fluid and organs, including porcine eye and mouse stomach, and magnetothermal heating for tumor ablation in a mouse model. By combining these capabilities, the fabrication and imaging approach provides a robust platform for non‐invasive monitoring and manipulation of microrobots for transformative applications in medical treatment and biological research.more » « less
An official website of the United States government
